For instance
A=[749 583 740 235 735 971 867 86 366 369]
B=[685 598 789 368 206 87 772 206 388 552]
blandAltmanPlot(A,B);
function blandAltmanPlot(A,B)
%reference: Y H Chan, Biostatistics 104:
%Correlational Analysis,
%Singapore Med J 2003 Vol 44(12) : 614-619
meanAB=(A+B)./2;
difff=A-B;
meanDiff=mean(difff);
stdDiff=std(difff);
meanp2D=meanDiff+2*stdDiff;
meanm2D=meanDiff-2*stdDiff;
n=length(difff);
minD=min(meanAB)-0.1;
maxD=max(meanAB)+0.1;
figure;
plot(meanAB,difff,'.k')
hold on;
plot([minD; maxD],ones(1,2)*meanp2D,'--k');
text(minD+0.01,meanp2D+0.01,'Mean + 2*SD');
hold on;
plot([minD; maxD],ones(1,2)*meanm2D,'--k');
text(minD+0.01,meanm2D+0.01,'Mean - 2*SD');
hold on;
plot([minD; maxD],ones(1,2)*meanDiff,'--k');
xlim([minD maxD]);
xlabel('(A+B)/2');
ylabel('A-B');
The excel spreadsheet with the example of Bland and Altman plots is here. These two programs calculated the same statistics.